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The probability distribution is found for the
link distance between two randomly posi-
tioned mobile radios in a wireless network
for two representative deployment scenar-
ios: (1) the mobile locations are uniformly
distributed over a rectangular area and
(2) the x and y coordinates of the mobile
locations have Gaussian distributions. It
is shown that the shapes of the link dis-
tance distributions for these scenarios are
very similar when the width of the rectan-
gular area in the first scenario is taken to
be about three times the standard deviation
of the location distribution in the second

scenario. Thus the choice of mobile loca-
tion distribution is not critical, but can be
selected for the convenience of other as-
pects of the analysis or simulation of the
mobile system.
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1. Introduction

The probability that a link between two mobile radios
has sufficient signal-to-noise ratio for acceptable trans-
mission quality or reliability is, other factors being
equal, the probability that the link distance d is less that
some value R , where R is termed the transmission
range:

Pr{Link is good} = Pr{d � R} = Fd (R ). (1.1)

The function Fd (�) in Eq. (1.1) is the cumulative proba-
bility distribution function (cdf) for the link distance.

Assuming that different links fail independently, the
quantity Fd (R ) can be taken as the probability of suc-
cess (acceptable transmission quality) in a binomial trial
in which two link endpoints are selected; if the trial is
repeated N times, then an estimate of the number of

good links is NFd (R ). Also, the probability that multi-
hop communication paths are reliable can be related to
the individual link reliabilities. For these and other rea-
sons, the cdf for the link distances in a mobile radio
system is an important quantity [1,2].

There is an infinite number of potential scenarios in
which locations are selected for the different mobile
radios. In this paper, in order to lay the goundwork for
further analysis of mobile radio systems, a random selec-
tion of mobile locations is assumed, and the cdf of the
link distances is found for two simple but fundamental
scenarios: (1) a rectangular deployment area in which
mobiles are uniformly distributed and (2) a deployment
in which the x and y coordinates of the mobile locations
have Gaussian distributions.
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2. Uniform Distribution of Link Distances
in a Rectangular Area

2.1 Assumptions and Formulation of the
Derivation

Let the positions of the mobile users (referred to as
“mobiles”) be distributed randomly in a rectangular area
with dimensions D1 and D2, as illustrated in Fig. 1, in
which we have assumed D1 � D2 without loss of gener-
ality. The xi and yi coordinates of mobile i have the
uniform distributions given by the probability density
functions (pdfs) px (� ) and py (� ), respectively, where

1
D1

, |� | � 1
2 D1

px (� ) = � (2.1a)
0, otherwise

1
D2

, |� | � 1
2 D2

py (� ) = � . (2.1b)
0, otherwise

We assume that the x and y positions of any two mobiles
are selected independently.

Fig. 1. Rectangular area for uniform distribution of mobile locations.

The link distance between mobiles i and j is defined
as

dij =
� �(xi � xj )2 + (yi � yj )2 = �(�x )2 + (�y )2 (2.2)

where, as illustrated generically in Fig. 2, the differ-
ences �x = xi � xj and �y = yi � yj are independent and
have the pdfs given by

D1 � |� |
D1

2 , |� | � D1

p�x (� ) = � (2.3a)
0, otherwise

and

D2 � |� |
D2

2 , |� | � D2

p�y (� ) = � (2.3b)
0, otherwise

and where the absolute values of the differences
|�x | = |xi � xj | and |�y | = |yi � yj | are independent and
have the pdfs given by

2(D1 � � )
D1

2 , 0 � � � D1

p|�x|(� ) = � (2.4a)
0, otherwise

and

2(D2 � � )
D2

2 , 0 � � � D2

p|�y|(� ) = � . (2.4b)
0, otherwise

The cumulative probability distribution function for the
distance between two mobiles therefore is formulated as

Fd (� )=Pr{dij ��}=Pr��(xi �xj )2 + (yi �yj )2 ���
=Pr��(�x )2 + (�y )2 ���=Pr��|�x |2 + |�y |2 � ��
= �� d� d� p|�x|,|�y|(� , � ) (2.5a)

(� , � ) � A

= 1 � �� d� d� p|�x|,|�y|(� , � ) (2.5b)

(� , � ) � A
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Fig. 2. Pdfs for location, difference, and absolute value of difference.

where p|�x|,|�y|(� , � ) = p|�x|(� )p|�y|(� ) denotes the joint
pdf of the absolute values of the x and y differences and
A denotes the domain of integration, illustrated in Fig. 3,
such that �� 2 + � 2 � � while both 0 � � � D1 and
0 � � � D2, or 0 � � � min{D1, �} and
0 � � � min{D2, �� 2 � � 2}. Using the pdfs of Eqs.
(2.4a) and (2.4b), Eq. (2.5a) becomes

Fd (� ) = � min{D1, �}

0

d�

� min�D2,��2��2�
0

d�
4

D1D2
�1 �

�
D1
��1 �

�
D2
� (2.6a)

= 4 � min{1, �/D1}

0

du (1 � u ) � min�1,��2�D2
1u2/D2�

0

dv (1 � v )

(2.6b)

= 4 � min{1, �}

0

du (1 � u ) � min�1,	��2�u2�
0

dv (1 � v )

(2.6c)

in which we define the normalized variable � =
� � /D1

and the area shape parameter 	 =
� D1/D2 � 1. The evalu-

ation of this double integral is facilitated by considering
different intervals for the value of � . For � < 0, of
course, the integral equals zero. For � > �D 2

1 + D 2
2, the

double integral equals one. Similarly, Eq. (2.5b) be-
comes

Fd (� ) = 1 � � D1

L 1

d� � D2

L 2(�)

d�
4

D1 D2
�1 �

�
D1
��1 �

�
D2
�

(2.7a)

= 1 � 4 � 1

L'1

du (1 � u ) � 1

L'2(u)

dv (1 � v ) (2.7b)

with the lower limits

L1 = � 0, 0 < � � D2

�� 2 � D 2
2, D2 < � � �D 2

1 + D 2
2

L'1= � 0, 0 < � � 	 �1

(2.7c)
�� 2 � 	 �2, 	 �1 < � � �1 + 	 �2

L2 = � 0, 0 < � � D1 and � > �

�� 2 � � 2, D1 < � � �D 2
1 + D 2

2

L'2= � 0, 0 < � � 1 and u > �
. (2.7d)

	�� 2 � u 2, 1 < � � �1 + 	 �2
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Fig. 3. Domain of integration for the pdf.

2.2 Representative Results for the cdf

In Appendix A, it is shown that the cdf for the link
distance between two mobiles that are randomly posi-

tioned in a rectangular area is given by Eq. (2.8). For a
square area with D1 = D2 = D , or 	 = 1, the cdf reduces
to Eq. (2.9).

0, � < 0

	� 2[1
2 	� 2 � 4

3 � (1 + 	 ) + 
], 0 � � < 1

2
3 	�� 2 � 1 (2� 2 + 1) � 1

6 	 (8� 3 + 6	� 2 � 	 )

Fd (� = �D1) =
+ 2	� 2sin�1(1/� ), 1 � � < 	 �1

. (2.8)
2
3 	�� 2 � 1 (2� 2 + 1) � 1

2 	 2(� 4 + 2� 2 � 1
3)

+ 2
3 �� 2 � 	 �2 (2	 2� 2 + 1) + 1

6 	 �2 � � 2

+ 2	� 2{sin�1(1/� ) � cos�1(1/	� )}, 	 �1 � � < �1 + 	 �2

1, �1 + 	 �2 � �

0, � < 0

� 2(1
2� 2 � 8

3� + 
), 0 � � < 1

Fd (� = �D ) = 4
3 �� 2 � 1(2� 2 + 1) � (1

2� 4 + 2� 2 � 1
3) . (2.9)

+ 2� 2[sin�1(1/� ) � cos�1(1/� )], 1 � � < �2

1, �2 � �
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Example plots of Eqs. (2.8) and (2.9) are shown in Fig.
4. For example, note from Fig. 4 that the median link
distance (the value of � for which the cdf equals 0.5) is
approximately � = dmed ≈ 1

2 D for the case of 	 = 1. In
fact, solving Fd (� ) = 0.5 numerically for 	 = 1 yields
�med = 0.5120. Additional median values for this distri-
bution are given in Table 1 for different values of 	 .

2.3 The pdf and Mode for the Link Distance in a
Rectangular Area

The probability density function pd (� = � D1) for the
link distance in a rectangular area is found by differenti-
ating the cdf in Eq. (2.8) to obtain Eq. (2.10). For the
special case of D1 = D2 = D or 	 = 1, Eq. (2.10) be-
comes Eq. (2.11). Example plots of these functions are
shown in Fig. 5.

Fig. 4. Plot of the link distance cdf for a rectangular deployment area (D1 = 	 D2 � D2).

	� [2	� 2 � 4� (1 + 	 ) + 2
], 0 � � < 1

4	��� 2 � 1 � 2	� (2� + 	 )

+ 4	�sin�1(1/� ), 1 � � < 	 �1

pd (� = � D1) =
1

D1
4	��� 2 � 1 + 4	 2��� 2 � 	 �2 . (2.10)

� 2� (	 2� 2 + 1 + 	 2)

+ 4	�{sin�1(1/� ) � cos�1(1/	� )}, 	 �1 � � < �1 + 	 �2

0, otherwise

2� (� 2 � 4� + 
), 0 � � < 1

8��� 2 � 1 � 2� (� 2 + 2)

pd (� = � D ) =
1
D + 4�{sin�1(1/� ) � cos�1(1/� )}, 1 � � < �2

. (2.11)

0, otherwise
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Fig. 5. Plot of the link distance pdf for a rectangular deployment area (D1 = 	 D2 � D2).

Table 1. Median values of link distances for a D1 � D2 rectangular
area, normalized by D1 < D2

	 = D1/D2 �med = �med/D1

1.00 0.5120
0.95 0.5254
0.90 0.5401
0.85 0.5563
0.80 0.5743
0.75 0.5943
0.70 0.6170
0.65 0.6428
0.60 0.6725
0.55 0.7072
0.50 0.7486
0.45 0.7990
0.40 0.8625
0.35 0.9465
0.30 1.0666
0.25 1.2453

From differentiation of the pdf and solving the result-
ing quadratic equation, the mode of the distribution is
found to be

�mode =
�mode

D1
=

2(1 + 	 )
3	

� �4(1 + 	 )2

9	 2 �


3	

. (2.12)

Example values of the mode for different values of 	 are
given in Table 2. The mode values in Table 2 are

Table 2. Mode of the link distances for a D1 � D2 rectangular area,
normalized by D1 < D2

	 = D1/D2 �mode =
�mode

D1

1.00 0.4786
0.95 0.4908
0.90 0.5034
0.85 0.5165
0.80 0.5299
0.75 0.5439
0.70 0.5582
0.65 0.5730
0.60 0.5882
0.55 0.6037
0.50 0.6196
0.45 0.6357
0.40 0.6521
0.35 0.6687
0.30 0.6855
0.25 0.7023

smaller than the median values in Table 1, indicating a
significant amount of skew in the distribution, which
can be observed in the pdf plots in Fig. 5.
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3. Distribution of Link Distances for
Gaussian-Distributed Coordinates

3.1 Derivation of the Link Distance pdf and cdf for
Gaussian-Distributed Locations

Instead of assuming that the mobiles are randomly
located in a rectangular area, we now assume that the x
and y coordinates of the mobile locations have Gaussian
distributions. That is, we assume that the pdfs of the x
and y coordinates are independent and have the follow-
ing pdfs:

px (� ) =
1

�1�2

e��2/2�2

1, � 
 < � < 
 (3.1a)

and

py (� ) =
1

�2�2

e��2/2�2

2, � 
 < � < 
 (3.1b)

where �1 and �2 are, respectively, the standard devia-
tions of the x and y coordinates. Without loss of general-

ity, we assume that �1 = ��2, where � is an area shape
parameter, with � � 1. The joint pdf of the coordinates
is given by

px,y (� , � ) =
1

2
�1�2
exp�� 1

2	��
�1
�2

+ ��
�2
�2
�. (3.2a)

Note that the joint pdf in Eq. (3.2a) is the special case
of the bivariate Gaussian pdf with uncorrelated random
variables (RVs); the more general case of correlated
Gaussian coordinates can be treated by using a simple
transformation of the coordinate system. As illustrated
in Fig. 6, the elliptical area defined by the equation

��
�1
�2

+ ��
�2
�2

= k 2 (3.2b)

contains 100 (1 � e�k2/2) percent of the mobile positions,
or about 39 % of the mobile positions when k = 1, 86 %
when k = 2, and 99 % when k = 3. The elliptical area
containing nearly all the positions corresponds to the
rectangular area shown in Fig. 1, so that the Gaussian-
coordinate model can easily be related to the uniformly

Fig. 6. Elliptical areas associated Gaussian mobile coordinates.
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distributed mobile model when it is convenient. For
example, an ellipse just fitting inside the rectangle of
Fig. 1 has the area 1

4 
D1D2 and contains 1
4 
 = 78.54 %

of the mobile positions for the rectangular, uniform dis-
tribution. This same percentage for the Gaussian-coor-
dinate model is contained in the elliptical area given by
Eq. (3.2b) with k = 1.754, so that the two models are
roughly equivalent when 1

2 D1 ≈ 1.75 �1 and
1
2 D2 ≈ 1.75 �2, or D1 ≈ 3.5 �1 and D2 ≈ 3.5 �2.

Since a difference of independent Gaussian RVs with
variances a and b is also a Gaussian RV whose variance
is a + b , the differences in the coordinates of two mo-
biles are Gaussian:

� x = xi � xj = G (0, 2� 2
1) and

�y = yi � yj = G (0, 2� 2
2) (3.3)

where G (� , � 2) denotes a Gaussian RV with mean �
and variance � 2. The joint pdf of the differences is
given by

p�x,�y (� , � ) =
1

4
�1�2
exp�� 1

2	 � 2

2� 2
1

+
� 2

2� 2
2

�. (3.4)

The cumulative probability distribution function for the
distance between two mobiles is formulated in terms of
the squares of the Gaussian RVs � x and �y as

Fd (� ) = Pr{dij � �} = Pr��(� x )2 + (�y )2 � ��.

(3.5a)

Let us define the rectangular-to-polar change of vari-
ables given by � x = dij cos � and �y = dij sin � . The
joint pdf of dij and � , expressed in terms of the dummy
variables � and � , is found to be

pd,� (� , � ) =
�

4
�1�2
exp��

� 2

4 	cos2�
� 2

1
+

sin2�
� 2

2

�,

0 � � � 2
, � � 0. (3.6a)

The marginal pdf of dij is found by integrating out the
variable � in Eq. (3.6a). Noting that the joint density is
the same in each of the four quadrants, we can write

pd (� ) = 4 � 
/2

0

d� pd,� (� , � )

=
�


�1�2
� 
/2

0

d� exp��
� 2

4 	cos2�
� 2

1
+

sin2�
� 2

2

�

=
�


�1�2
� 
/2

0

d� exp{� � 2(a + b cos 2� )}

=
�

2
�1�2
� 


0

d� exp{�� 2(a + b cos � )} (3.6b)

=
�

2�1�2
e�a�2

I0(b� 2) (3.6c)

in which we use the integral in Ref. [5], Sec. 9.6.16 to
identify I0(�), the modified Bessel function of the first
kind, and we define

a =
� 1

8� 1
� 2

1
+

1
� 2

2
�, b =

� 1
8� 1

� 2
1

�
1

� 2
2
�. (3.6d)

For convenience of notation and ease of comparison of
the rectangular and Gaussian deployment models, we
define the normalized variable � =

� � /D1 = � /��1,
where � =

� Di /�i relates the dimensions of the rectangu-
lar deployment area to the standard deviation of the
Gaussian deployment distribution, and we denote the
area shape parameter by 	 = D1/D2 = �1/�2 to be consis-
tent with the use of this symbol for the rectangular
deployment area. Then the pdf of the link distance can
be written

pd (� = ��1� ) =
1

��1

�
� 2	�

2
e��2�2(1+	2)/8 I0�� 2� 2(1 � 	 2)/8�, � � 0 (3.7a)

with the special case for 	 = 1 (�1 = �2) given by

pd (� = ��1� ) =
1

��1
�

� 2�
2

e��2�2/4, 	 = 1, � � 0.

(3.7b)

Plots of the link distance pdf Eq. (3.7a) are shown in
Fig. 7 for � = 3 (the length of the side of the rectangular
deployment area is three times the standard deviation of
the Gaussian deployment area in each direction) and
	 = 1, 0.5, and 0.25. The similarity of these plots to the
in Fig. 5 is strong; the similarity can be made even
stronger by choosing a little smaller value than � =
Di /�i = 3. Of course, the curves in Fig. 7 are smoother
than those in Fig. 5 because the deployment area for the
assumption of a Gaussian distribution of mobile loca-
tions has no edges.
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Fig. 7. Plot of the link distance pdf for Gaussian-distributed mobile locations.

Now having the pdf of dij , we can write the cdf Eq.
(3.5a) for this RV as

Fd (� = ��1� ) = � �

0

d� pd (� )

=
1

2�1�2
� �

0

d� � e�a�2
I0(b� 2)

=
� 2	
2 � �

0

du u e��2u2(1+	2)/8 I0�� 2 u 2(1 � 	 2)/8�. (3.8a)

For the special case of 	 = 1, Eq. (3.8a) becomes

Fd (� = ��1� ) =
� 2

2 � �

0

du u e��2u2/4 = � �2�2/4

0

dv e�v

= 1 � e��2�2/4. (3.8b)

Plots of Eq. (3.8a) for � = 3, obtained by numerical
integration, are shown in Fig. 8.

3.2 Median and Mode for the Link Distance and
Gaussian-Distributed Locations

For 	 = 1, Eq. (3.7b) is easily differentiated to find the
mode of the distribution and Eq. (3.8b) is easily solved
for the median:

�mode|	=1 = �2/� = 1.4142, (3.9a)

�med|	=1 = 2�ln 2/� = 1.3863/� . (3.9b)

From Table 2, the mode of the distribution for a random
distribution of mobile locations in a rectangular area for
	 = 1 is 0.4786; the mode for the Gaussian distribution
of mobile locations for 	 = 1 matches it when
� = 2.9549. From Table 1, the median of the distribution
for a random distribution of mobile locations in a rectan-
gular area for 	 = 1 is 0.5120; the median for the Gaus-
sian distribution of mobile locations for 	 = 1 matches it
when � = 2.7076.

4. Conclusions

We have found the distributions for the distance be-
tween randomly distributed mobiles for two different
assumptions: (1) the mobile locations are uniformly dis-
tributed in a rectangular area, and (2) the mobile loca-
tions have a two-dimensional Gaussian distribution. The
cdfs for both cases are very similar despite the fact that
the first distribution has a finite boundary and the sec-
ond does not. The implication of this finding is that for
simulation or analysis of mobile communication sys-
tems, the model used for the distribution of the mobile
locations can be chosen for convenience.
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Fig. 8. Plot of the link distance cdf for Gaussian-distributed mobile locations.

5. Appendix A. Details of the Derivation
of the Link Distance Distribution for a
Rectangular Area

The development here follows that in [2] but in more
detail, correcting several typographical errors in that
presentation.

5.1 Evaluation for the Interval 0 � � � D1, or
0 � � � 1

For this interval we use Eq. (2.6c); the upper limit of
the first (outer) integral equals � and the upper limit of
the second (inner) integral equals 	�� 2 � u 2. Then,

Fd (� = �D1) = 4 � �

0

du (1 � u ) � 	��2�u2

0

dv (1 � v )

= 4� � 1

0

dw (1 � � w ) � 	��1�w2

0

dv (1 � v )

= 2� � 1

0

dw (1 � � w )	1 � �1 � 	��1 � w 2�2

= 2� � 1

0

dw (1 � � w )[2	��1 � w 2 � 	 2� 2(1 � w 2)]

= 4	� 2 � 1

0

dw�1 � w 2 � 4	� 3 � 1

0

dw w�1 � w 2

� 2	 2� 3 � 1

0

dw (1 � � w � w 2 + � w 3). (5.1a)

From Ref. [3], Sec. 3.251.1 we have

� 1

0

dw w��1�1 � w����1

=
1
�

B��
�

, �� (5.1b)

where B(a , b ) = �(a )�(b )/�(a + b ) is the Beta func-
tion. Applying Eq. (5.1b) to (5.1a) yields

Fd (� = � D1) = 4	� 2 � 1
2 B(1

2, 3
2) � 4	� 3 � 1

2 B(1, 3
2)

� 2	 2� 3(1 � 1
2 � � 1

3 + 1
4 � )

= 	� 2[
 � 4
3 � (1 + 	 ) + 1

2 	� 2]. (5.1c)

5.2 Evaluation for the Interval D1 � � � D2, or
1 � � � 1/�

For this interval we use Eq. (2.6c); the upper limit of
the first (outer) integral equals 1 and the upper limit of
the second (inner) integral equals 	�� 2 � u 2. Then,
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Fd (� = � D1) = 4 � 1

0

du (1 � u ) � 	��2�u2

0

dv (1 � v )

= 2 � 1

0

du (1 � u )	1 � �1 � 	�� 2 � u 2�2

= 2 � 1

0

du (1 � u )[2	�� 2 � u 2 � 	 2(� 2 � u 2)]

= 4	 � 1

0

du�� 2 � u 2 � 4	 � 1

0

du u�� 2 � u 2

� 2	 2 � 1

0

du (� 2 � � 2u � u 2 + u 3). (5.2a)

From Ref. [4], integral No. 157 we have

� du�� 2 � u 2 =
1
2 	u�� 2 � u 2 + � 2sin�1�u

��
 (5.2b)

and in Ref. [4], integral No. 162 we have

� du u�� 2 � u 2 = �
1
3 �� 2 � u 2�3/2

. (5.2c)

Substituting Eqs. (5.2b) and (5.2c) in Eq. (5.2a), we
obtain

Fd (� = � D1) = 2	 	�� 2 � 1 + � 2sin�1�1
��


� 4
3 	 	� 3 � (� 2 � 1)

3/2
 � 	 2(� 2 � 1
6)

= 2
3 	�� 2 � 1(2� 2 + 1) + 2	� 2sin�1�1

��
� 1

6 	 [8� 3 + 6	� 2 � 	 ]. (5.2d)

5.3 Evaluation for the Interval D2 � � �

�D 2
1 + D 2

2, or � �1 � � � �1 + � �2

For this third interval we use Eq. (2.7c); the lower
limit of the first (outer) integral equals �� 2 � 	 �2 and
the lower limit of the second (inner) integral equals
	�� 2 � u 2. Then,

Fd (� = � D1) = 1

� 4 � 1

�� 2�	�2

du (1 � u ) � 1

	�� 2�u 2

dv (1 � v ) (5.3a)

= 1 � 2 � 1

�� 2�	�2

du (1 � u )�1 � 	�� 2 � u 2�2

= 1 � 2 � 1

�� 2�	�2

du (1 � u )	1 � 2	�� 2 � u 2

+ 	 2�� 2 � u 2�

= 1 � 2 � 1

�� 2�	�2

du (1 � u ) + 4	 � 1

�� 2�	�2

du�� 2 � u 2

� 4	 � 1

�� 2�	�2

du u�� 2 � u 2

� 2	 2 � 1

�� 2�	�2

du (� 2 � � 2u � u 2 + u 3)

= 1 � �1 � �� 2 � 	�2�2

+ 2	 	�� 2 � 1 + � 2sin�1�1
�� � 	 �1�� 2 � 	 �2

� � 2sin�1��� 2 � 	 �2

� �

+ 4

3 	 	(� 2 � 1)
3/2

� 	 �3

� 2	 2	� 2 � 1

2� 2 � 1
3 + 1

4

� � 2�� 2 � 	 �2 + 1
2 � 2(� 2 � 	 �2) + 1

3 (� 2 � 	 �2)
3/2

� 1
4 (� 2 � 	 �2)2


= 2
3 	�� 2 �1(2� 2 +1)+2	� 2�sin�1�1

���cos�1� 1
	���

+ 2
3 �� 2 � 	 �2(2	 2� 2 + 1) � 1

2 	 2(� 4 + 2� 2 � 1
3)

+ 1
6 	 �2 � � 2. (5.3b)

5.4 Special Case: D1 = D2 or � = 1

When D1 = D2 = D or 	 = 1, the interval from � = 1 to
� = 	 �1 vanishes, and from Eqs. (5.1c) and (5.3b) the
cumulative probability distribution for the distance be-
tween any two mobiles becomes Eq. (5.4). A form of
the result for this special case was published in [1].
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0, � < 0

� 2(1
2 � 2 � 8

3 � + 
), 0 � � < 1

Fd (� = � D ) = 4
3 �� 2 � 1(2� 2 + 1) � (1

2 � 4 + 2� 2 � 1
3) . (5.4)

+ 2� 2[sin�1(1/� ) � cos�1(1/� ), 1 � � < �2

1, � � �2
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